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Solid State Chemistry 
Introduction 

Solid state chemistry deals with the synthesis, structure, properties and applications of 

solid materials. There is great diversity in range of properties and applications of solids. With the 

advent of structure-property relations, it is becoming possible to design new materials, which 

have specific structure and properties. 

Properties of Solid 

 They are incompressible, inflexible and Mechanical strength. 

 They have specific mass, volume and shape. 

 Intermolecular force is physically powerful. 

 Intermolecular distance is minute. 

 

These properties indicate that the molecules, atoms or ions make up a solid are closely 

packed i.e., they are held together by strong forces and cannot move at random. 
 
Interrelations of chemical bonding, structure, imperfections and properties due to electronic 
arrangements presents a birds eye-view of the applications of solids in various spheres. 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

Classification of Solids 

Solids can be classified into three categories based on their structural features: 

1. Crystalline solids 

2. Amorphous solids (non-crystalline)  

3. Poly Crystalline solids 

 

 

 

 

 

 

 

 

Chemical bonding Structure 

Imperfections 

Properties 
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Crystalline Solids 

The solids that have their atoms, ions, or molecules which are arranged in a definite three 

dimensional pattern are called as crystalline solids. 

 

They have the following characteristics 

 Crystalline Solids have a characteristic geometrical shape. 

 Crystalline solids have sharp melting points, indicating the presence of a long range order 

arrangement in them 

 Crystalline solids are anisotropic by nature i.e., their mechanical, electrical and optical 

properties depend upon the direction along which they are measured. 

 When cut or hammered gently they show a clean fracture along a smooth surface. 

Some of the examples of crystalline solids are 

Sodium chloride, Cesium Chloride and  etc. 

 

Amorphous Solids 

Substances whose constituent’s atoms, ions, or molecules do not possess a regular orderly 

arrangement are called amorphous solids. They are different from crystalline solids in many 

respects. 

 

They have the following characteristics 

 These Solids do not have a definite geometrical shape. 

 Amorphous solids do not have a fixed melting point. They melt over a wide range of 

temperature. 

 Amorphous solids are isotropic in nature. 

 Amorphous solids do not break at a fixed   cleavage planes. 

The common examples of amorphous solids are 

Glass,   Rubber, Cotton candy, Fused silica, Ceramic, Plastics, Glue. 

Solids 

Crystalline 
“A substance whose 

constituents are arranged in an 

orderly manner in a definite 

geometric form” (-have sharp 

melting points) 

  

  

Non – Crystalline 
The constituents are not arranged 

in a regular manner. 
Amorphous 

Polymer (nylon, PVC, Rubber) 

Poly Crystalline 
Occur as powder resemble 

amorphous, but properties are 

just like crystalline solids 

Dielectric  
eg. Ultrasonic  
Generators 

Electrical 
eg. Diodes, 
Solar Cells 

Magnetic 
eg. Telephones, 

Tapes 

Thermal 
eg. Thermistores 

Optical 
eg. Lasers 
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The above properties suggest that the properties of the solids not only depend upon the nature of 

the constituents, but also on their arrangements. 

Difference between amorphous and crystalline solids 

 
 

Types of Crystalline Solid 

 

Crystalline solids may be classified into four types depending upon the nature of bonds 

present in them. Crystalline solids can be further classified depending on the nature of the 

bonding as: 

1. Ionic ( Nature of force: Strong electrostatic forces of attraction) Eg: NaCl, LiF, MgO and 

etc. 

2. Molecular, contain discrete molecular units held by relatively weak intermolecular forces 

(VanderWaal’sforces, Dipoleinteraction, Hydrogen bonding). Eg: Solid Ar, Kr and etc.  

3. Covalent  (Covalent bonds). Lattice points are atoms. Eg: Diamond, graphite, Si, Ge and 

etc.  

4. Metallic  ( Metallic bonds). Eg: Al, Cu and etc  

 

Miller indices 

 Miller indices are a set of integers (h, k, l) which are used to describe a given plane in a 

crystal. The procedure for determining the Millar indices for a plane is as follows. 
 
Importance 

       i) Used to characterise the crystal pattern. 

                          ii) Used to calculate the edge length of the unit cell. 
 

                    i) Let OX, OY and OZ represent the 3  

                            crystallographic axes. 

                        ii) Let ABC a unit plane 

                       iii) Let a, b, c be unit intercepts. 

                      iv) Let KLM are the multiples of abc. 
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The procedure for determining the Millar indices for a plane is as follows. 

a)  Prepare a three column table with the unit cell axes at the top of the column. 

b)  Enter in each column the intercepts (expressed as a multiples of a, b or c) 

c)  Invert all the numbers. 

d)  Clear the fraction to obtain the whole number h, k and l. 

  (Note: The negative sign in the Miller indices are indicated by placing a bar on the integer.    

      The Miller indices are enclosed within parentheses). 

 

Weiss indices: The coefficients of a, b, c are known as Weiss indices. 

 

Problems: 

1. Calculate the Miller indices of Crystal planes which cut through the crystal axes at 

(2a,3b,c)?  

Solution: 

Unit cell axes a b c 

intercepts 2 3 1 

reciprocals 1/2 1/3 1 

Clear fractions 3 2 6 

Hence, the Miller indices are (326) 

 

2. Calculate the Miller indices of Crystal planes which cut through the crystal axes at  

(2a,-3b,-3c)?  

 

Unit cell axes a b c 

intercepts 2 -3 -3 

reciprocals 1/2 -1/3 -1/3 

Clear fractions 3 -2 -2 

 

Hence, the Miller indices are (3 2  6) 

 

 

Exercise Problems: 

1. If a plane cuts the axes at distance in the ratio (4:3:), calculate the Miller indices? 

[Ans: (340)] 

Miller Indices (hkl): Indexing of Crystal Planes 

The orientation of a surface or a crystal plane may be defined by considering how the 

plane (or any parallel plane) intersects the main crystallographic axes of the solid. The 

application of a set of rules leads to the assignment of the Miller Indices , (hkl) ; a set of numbers 

which quantify the intercepts and thus may be used to uniquely identify the plane or surface.  

The following treatment of the procedure used to assign the Miller Indices is a simplified 

one (it may be best if you simply regard it as a "recipe") and only a cubic crystal system (one 

having a cubic unit cell with dimensions a x a x a ) will be considered.  
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The procedure is most easily illustrated using an example so we will first consider the following 

surface/plane:  

 

Step 1:  Identify the intercepts on the x , y and z  axes.  

In this case the intercept on the x-axis is at x = a but the surface is parallel to the y and z 

axes - strictly therefore there is no intercept on these two axes but we shall consider the  intercept 

to be at infinity ( ∞ ) for the special case where the plane is parallel to an axis. The intercepts on 

the x- , y- and z-axes are thus  

Intercepts:    a , ∞ , ∞  

Step 2:  Specify the intercepts in fractional co-ordinates  

Co-ordinates are converted to fractional co-ordinates by dividing by the respective cell- 

dimension - for example, a point (x,y,z) in a unit cell of dimensions  a x b x c  has fractional co-

ordinates of ( x/a , y/b , z/c ). In the case of a cubic unit cell each co-ordinate will simply be 

divided by the cubic cell constant , a . This gives  

Fractional Intercepts:    a/a , ∞/a, ∞/a    i.e.    1 , ∞ , ∞  

Step 3:  Take the reciprocals of the fractional intercepts  

This final manipulation generates the Miller Indices which (by convention) should then 

be specified without being separated by any commas or other symbols. The Miller Indices are 
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also enclosed within standard brackets (….) when one is specifying a unique surface such as that 

being considered here.  

The reciprocals of 1 and ∞ are 1 and 0 respectively, thus yielding  

Miller Indices:   (100)  

So the surface/plane illustrated is the (100) plane of the cubic crystal. 

Other Examples  

1. The (110) surface  

                          

2. The (111) surface  
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3. The (210) surface 

  

                  

4. The (1,0,0) , (0,1,0) and (0,0,1) planes 

 

                                  
 

Interplanar Spacing in a crystal system: 

It can be shown that in a crystal, the interplanar distance is the distance between two 

identical planes. 

                 

Where h, k, l are Miller indices of the plane and a, b, c are the dimensions of the unit cell. 

For Cubic system, a = b = c, Hence, the equation (1) becomes 
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For Tetragonal system, a = b  c, Hence, the equation (1) becomes 

            

For Orthorhombic system, a  b  c, Hence, the equation (1) becomes as such  

                
Problem: 1) the parameters of an orthorhombic unit cell are a= 50 pm, b= 100 pm and c = 150 

pm. Calculate the spacing between the (123) plane? 

Solution:  

For Orthorhombic system, a  b  c, Hence, dhkl is given by  

        

       
 

Symmetry elements and Symmetry operations 

Symmetry operations 

  It is an action that leaves an object looking like the same after it has been carried out. It 

includes rotation, reflection and inversion. 

 

Symmetry elements 

For each symmetry operation, there is a corresponding symmetry element which is the 

point, line or plane with respect to which the symmetry operation is performed. Symmetry based 

on simple rotation is often called symmetry of first kind and symmetry based on reflection (or) 

rotation/reflection is known as symmetry of second kind. 



UNIT –I : SOLID STATE / SEM –IV / M.Sc / Dr. MA & CR / SJC / TRICHY-02  9 
 

 

 

Symmetry Elements Symmetry Operation 

1. Plane ( σ ) Reflection in the plane 

2. Proper axis (Cn) One or more rotations about the axis  

3. Improper axis (Sn) One or more repetition of the sequence: rotation followed by 

reflection in a plane perpendicular to the rotation axis. 

4. Center of symmetry                

(or)    Center of Inversion 

Inversion of all atoms through the center. 

 

Symmetry elements present in Cubic Crystal 

The elements of symmetry present in a cube are represented below. 

 

Plane of symmetry 
Two types of plane of symmetry are possessed by cubic system.  

1. Rectangular plane of symmetry 

                               

2. Diagonal plane of symmetry 

          

Axis of symmetry 

1. Four- fold axis of symmetry 
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2. Three-fold axis of symmetry 

                  

3. Two-fold axis of symmetry.  
`   

 

Centre of symmetry 

               

Hence, a cubic crystal possesses total 23 elements of symmetry.  

Plane of symmetry (3 + 6)         = 9 

Axes of symmetry (3 + 4 + 6)    = 13 

Centre of symmetry               (1) = 1 

                      Total symmetry = 23 
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Space lattice or crystal lattice 

 A space lattice is an array of points showing how atom, molecules or ions are arranged at 

different sites in a 3D space. The points are known as lattice points. 

 
 

Unit  Cell 

 The unit cell is a smallest repeating unit in the space lattice when repeated again and 

again, it results in the crystal of the substance. 

 The crystal may be considered to consist of infinite number of unit cells. 

 Thus, the unit cell may be considered as the brick of wall (where wall represents the 

crystal). 

 Just as the shape of the wall depends on the shape of the brick, the shape of the crystal 

also depends on the shape of the unit cell. 

 The size and shape of a unit cell is determined by the lengths of the edges of the unit cell 

(a, b and c) and by the angles ,  and . 

 Therefore, a unit cell is the fundamental pattern of a crystalline solid and it is 

characterized by the distance a, b and c and the interfacial angles , and . 
 

Types of unit cell: There are four different types of unit cells. 

 

Simple or primitive or basic unit cell (P): The unit cell having lattice points only at the corners 

is called Simple or primitive or basic unit cell. 

                                       
 

Face centred unit cell (FC). The unit cell having lattice points at the center of each face in 

addition to the lattice points at the corners is called Face centred unit cell. Fig1b 
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Body centered unit cell (BC) . The unit cell having lattice point at the center of the body in 

addition to the lattice points at the corners is called Face centered unit cell.  

                                               
 

End face centered unit cell or Base centred unit cell (I). The unit cell having lattice points at 

the two opposite faces in addition to the lattice points at the corners is called Face centred unit 

cell.  

                                                       
 

Seven Crystal System  

Crystal system Intercepts & Crystal angle Bravais lattice Examples 

1. Cubic  a = b = c;  =  =  = 90 P, BC , FC    (3) NaCl, Diamond, ZnS, CaF2 

2.Ortho Rhombic a  b   c;  =  =  = 90 P, BC, FC, I (4) PbCO3, BaSO4, K2SO4 

3. Tetragonal a = b  c;  =  =  = 90 P, BC         (2) TiO2, PO4, SnO2 

4.Rhombohedral  a = b = c;  =  =   90 P             (1) Calcite, Magnacite, Quartz. 

5. Monoclinic  a  b  c;  =   = 90   P,  I       (2) CaSO4.2H2O, 

K2MgSO4.6H2O 

6. Triclinic a  b  c;       90 P            (1) CuSO4.5H2O, K2Cr2O7 

7. Hexagonal a = b  c;  =  = 90; 

            = 120 

P           (1) Graphite, Zn, Cd, MgS. 

                                                                                  Total = (14)  
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There are 14 Bravais Lattices 

Bravais in 1848 showed that there are only 14 different ways by which atoms, ions and 

molecules can be arranged in three dimensions. Of these 7 are primitive systems and others may 

be body centered, face centered or end centered. These 14 different types of arrangement are 

called Bravais lattices. 
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Cubic crystal system 

The cubic crystal system is the simplest system analysed mathematically (although other 

systems can also be analysed accordingly).  

The analysis reflects the following characteristics 
1. Atomic radius 

2. Number of atoms per unit cell 

3. Coordination number 

4. Density of lattice crystal 

5. Packing fraction (efficiency of packing or % efficiency or density of packing)  

 

Atomic radius 

It is defined as ‘Half the distance between nearest neighboring atoms’ in a crystal. The 

atomic radius is represented in terms of length of edge ‘a’ in the unit cell. 

Simple cubic structure (SC) 

 

                    
Body centered cubic structure (BCC) 

                    `                   
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 Face centered cubic structure (FCC). 
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Number of atoms per unit cell 
Keeping the following points in mind, we can calculate the number of atoms in a unit cell. 

 An atom at the corner is shared by eight unit cells. 

Hence an atom at the corner contributes 1/8 to the unit cell 

 An atom at the face is a shared by two unit cells, hence, Contribution of each atom on the 

face is 1/2 to the unit cell. 

 An atom within the body of the unit cell is shared by no other unit cell, hence, 

Contribution of each atom within the body is 1 to the unit cell. 

 An atom present on the edge is shared by four unit cells, hence, Contribution of each 

atom on the edge is 1/4 to the unit cell. 

 By applying these rules, we can calculate the number of atoms in the different cubic unit 

cells of monatomic substances. 

 

 

Simple cubic 

 

Simple Cubic Lattice (Primitive-P): In which there are points only at the corners of each 

unit. 

                                                    

                                             Total number of atoms per unit cell of P = (1/8) x 8 = 1 

 

Face Centered Cubic Lattice ( F C): In which there are points at the corners as well as at the 

center of each of the six faces of the cube. 

 

                                                     Total number of atoms per unit cell = 8 x (1/8) = 1 

                                                  (since 8 corners occupied 1/8 atoms) 

                                                      6 faces shared by ½ atoms each   

                                                                  6 x ½  = 3 

                                                         Total  =  1 + 3 = 4 

Body Centered Cubic Lattice ( BC ): In which there are points at the corners as well as in the 

center of each cube. 

 

                                                      Total number of atoms  = 8 x (1/8)  = 1 

                                                       At the center 1 atom 

  Total = 1 + 1 = 2 
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Base Centered Cubic Lattice ( C ): In which there are points at the corners as well as in the 

edges of each cube 

 

                                                  At the corners  8 x (1/8) = 1   

                                                  At the edges 12 x (1/4)  = 3 

        Total = 1 + 3 = 4 

 

Number of atoms per unit cell in cubic lattice 

Types of Lattice Location of atoms 
Portion in the unit 

cell 

Number of atoms 

in the unit cell 

Primitive ( P ) Corner 1/8 1 

FC Face + Corner 1/2  3+1 = 4 

BC Body + Corner 1+1 2 

Edge or base 

centered 

Edge + Corner 1/4 3+1 = 4 

 

Coordination number 

It is defined as the number of nearest neighbors that an atom has in a unit cell. In an ionic 

crystal, the number of oppositely charged ions surrounding each ion is called its coordination 

number. Thus, the coordination number of a crystal depends upon the structure. For any system, 

the number of atoms touching the particular atom is called coordination number. 

Simple cubic structure has coordination number = 6  

Body centered cubic structure has coordination number = 8 

Face centered cubic structure has coordination number = 12 

Density of lattice crystal 
Calculation of Density of a Cubic Crystal from its Edge Length ‘a’ (The edge length 

should be in cm) 

The edge length of a cubic crystal can be obtained from X-ray studies and knowing the 

crystal structure possessed by it so that the number of particles per unit cell are known, the 

density of the crystal can be calculated. 

           
Density =

Mass per unit cell

Volume of unit cell                 
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Therefore, 

                    

x
Density =

n      atomic mass

Avogsdro number       vol.of uint cellx  
 

Where, n is the number of atoms per unit cell. The volume of unit cell is to be calculated for the 

given crystal system  

For cubic crystal, volume of unit cell is a
3
. 

 

For simple cubic, the density is given by  

                     

                     1× M 

  ρ =         

                    NA ×a
3 

 

For body centered cubic the density is given by 

                        2× M 

ρ =              

                      NA ×a
3 

 

For body centered cubic the density is given by 
 

         4× M 

            ρ =               

                     NA ×a
3 

Density of the substance is same as the density of the unit cell. 

For the density equation it is also possible to calculate the edge length (a) of the unit cell. 

 

Packing fraction (efficiency of packing or % efficiency or density of packing) and Void (or) 

Empty Space in Cubic Lattices 

It is defined as ratio of volumes occupied by atom in unit cell (u) to the total volume of 

the unit cell (V). 

                         
Packing Fraction =

Vol. occupied by atom in unit cell

      Total vol.of uint cell
=

u

V
 

It suggests that how closely the atoms are packed (stacked) together in the unit cell. For 

three cubic cells, these are illustrated. 

 

Efficiency of packing in simple cubic structure  

Let ‘a’ be the edge length og unit cell and ‘r’ be the atomic  radius. In Simple Cubic 

system, the total number of atoms per unit cell is ONE. Thus the volume of atoms in the unit cell 

is given by                     
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Since the total volume of the unit cell is V= a

3
 

 
This reveals that 52% of the unit cell is occupied by atoms and remaining 48% is empty. 

 

Efficiency of packing in Body centered cubic structure 
      We know, for a bcc structure 

                                                  
In bcc structure, the total number of atoms per unit cell is 2. 

 
Volume of the cube = a

3
 

                                                      
Therefore, Percentage efficiency  

 

                                       

                               
                                   = 68%  

This reveals that 68% of the unit cell is occupied by atoms and 32% is empty. 

 

 Efficiency of packing in Face centered cubic structure 
We have found that for a ccp arrangement 
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  We also know that, per unit cell in ccp arrangement has effectively 4 spheres. 

        

 
Therefore, Percentage efficiency 

                                                    
  

                                          

                                       
This reveals that 74% of the unit cell is occupied by atoms and 26% is empty. 

 

Thus, the % efficiency of packing in SC, BCC and FCC are 52%, 68% and 74% respectively. 

The packing density data;  FCC > BCC > SC  

 That is, FCC is more closely packed and more stable. 

 

Packing efficiency of hcp and ccp structures 

Show that the volume occupied by the spheres in the CCP or FCC structure is 74% 

 If the repetition sequence is ABC, ABC, ABC, … then the resulting structure is 

hexagonal closest packing or fcc closest packing. 

 In this case  

 (i) each corner atoms are shared by (8) surrounding cubes and each face centered atoms 

are shared by 2 surrounding cubes.  

  Total number of atoms in fcc cube is = 1/8 x 8 = 1         

       6 x ½ = 3 

 (ii)  atomic radius  

 

 

 (iii) Packing factor (v/V): 

  volume of 4 atoms (v) i.e., 4 x 4/3 x r
3
 

  r  =   

               

              2  a 

                4 

 

4 atoms / mol 
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                                           3 

    = 4 x 4  x     2  a    

3    4 

         = 4 x 4  x 2 x 2 x 2 x a
3
 

3 4 x 4 x 4 

        =    x 2 2 x a
3
  

3 4 2  

        =    x 2  a
3
 

       6                        

 

  

 

 

 

       Volume of unit cell = V  = a
3
 

  Packing Factor v/V  = 3.141 x 1.414 x a
3
    =   0.74  = 74% 

                                                                6 a
3
 

Hence, we notice that in the cubic closest packed structure only 74% of the space is actually 

occupied by spheres. 

 

Summary: 

 

 

Characters of the 

unit cell  

SC BCC FCC 

Atomic radius 

 

 
r = a/2 
 

 
 

Number of atoms 

per unit cell 

 

 
1 

 
2 

 
4 

Coordination 

number 

 

 

6 

 

8 

 

12 

Density of lattice 

crystal.  

 

 

               1× M 

 ρ =        

            NA ×a
3 

 

             

          2× M 

ρ =         

            NA ×a
3 

 

         

       4× M 

ρ =         

          NA ×a
3 

 

Packing fraction 52% 

 

68% 74% 

 

Problems: 

1. Chromium has mono atomic body-centred cubic structure. Its cell edge is 300 pm, what is 

its density? (Molar mass of Cr = 52 g mol
-1

, Avogadro number N = 6.023 x 10
23

 mol). 

Suggested solution: 

Given data:  
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n = 2 since structure is body-centered cubic 

M = 52 g mol
-1

 

a = 300 pm = 300 x 10
-10

 cm  

N = 6.023 x 10
23

 mol
-1 

Formula to be used is           

              2× M 

                      ρ =         

                 NA ×a
3 

 
  

        

          
2. An element of atomic mass 98.0 g mol

-1
 occurs in FCC structure. If the unit cell edge 

length is 500 pm and its density is 5.22 g cm
-3

. What is the value of the Avogadro's 

constant? 

Suggested solution: 

    Given data:  

    n = 4 , Since the structure is FCC: 

              M = 98.0 g mol
-1

   

a  = 500 pm = 500 x 10
-10

 cm = 5 x 10
-8

 cm 

P = 5.22 g cm
-3

  

Formula to be used is  

     4× M 

                      ρ =         

                 NA ×a
3 

 

 

 
= 6.0 x 10

23
 mol

-1 

 

3. Sodium chloride crystal has FCC structure. Its density is 2.163 x10
3
 kg m

-3
. Calculate the 

edge of the unit cell cube. 

Suggested solution: 

Given data: 

          Density = 2.163 x10
3
 kg m

-3
 

(MNaCl = 58.45 x 10
-3

 kg mol
-1

  

NA = 6.023 x 10
23

) 

                        Formula to be used is  

       4× M 
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                      ρ =         

                 NA ×a
3 

                  
                                 a

3
 = 179.5 x 10

-30
m

3
 

                (or) a = 5.64 x 10
-10

 m = 564 pm. 

 

4. Assuming aluminium (At mass = 27) has a density of 2.7 g cm
-3

 and its unit cell has an 

edge of 400 pm, what is the nature of the crystal lattice for the metal? 

  Suggested solution: 

Given data: 

                       Density =  2.7 g cm
-3 

     The edge length =  400 pm = 400 × 10
-8

 cm  

                        Formula to be used is  

        n × M 

                      ρ =         

                 NA ×a
3 

 

                                   
                           n  = 3.85 

                                n  = 4  

     Hence Al crystallises in face-centered cubic lattice. 

 

5. Lithiumborohydride crystallizes in orthorhombic system with 4 molecules per unit cell. 

The unit cell dimensions are a= 6.8Aº, b= 4.4 Aº and c= 7.2 Aº. if the molar mass is 

21.76, calculate the density of the crystal?  

 

6. The length of the unit cell edge of a body centered cubic metal crystal is 352 pm. 

Calculate the radius of an atom of the metal. 

Suggested solution: 

In body-centered cubic unit cell, the radius r of the atom is related to the edge of the unit 

cell by the relation. 

 

 
6. Calculate the density of Mo which forms body centered cubic crystal in which the 

distance between the centers of closest atoms is 274 pm. Atomic mass of Mo is 95.94. 

Suggested solution: 

In a body centered cubic crystal, the closest distance between touching atom is 
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           and here n  = 2  

                        n × M 

       ρ =         

                       NA ×a
3 

 

                    
 

                  ρ = 10.06 g cm
-3

. 

  

 

 

Packing of Constituent Particles in Crystals 

It is assumed that the atoms are hard spheres of identical size. Packing is done in such a 

way that they occupy maximum available space and leave minimum space empty. . This type of 

packing is called close packing. 

 

Close packing of spheres in one dimension. It is shown in the figure  this forms an edge of the 

crystal. 

                                         
                                          

Close packing of spheres in two dimensions. It is two types. 

i) Square close packing - Particles when placed in the adjacent rows show a horizontal as well as 

vertical alignment and form squares.  
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ii) Hexagonal close packing - Packing in every next row are placed in the depression between 

the particles of the first row. Hexagonal close packing with triangular voids is more efficient. 

Hence, Hexagonal close packing is the most efficient two dimensional closes packing.  

                            

 
 

         
Close Packing in Three Dimensions 

All real structures are three dimensional structures. They can be obtained by stacking two 

dimensional layers one above the other.  We discussed close packing in two dimensions which 

can be of two types; square close-packed and hexagonal close-packed. Let us take hexagonal 

close packing since it is more efficient and see what types of three dimensional close packing can 

be obtained from this.  

Three dimensional close packing from two dimensional hexagonal close packed layers:  

Three dimensional close packed structure can be generated by placing layers one over the 

other. 

(A) Placing second layer over the first layer 

Let us take a two dimensional hexagonal close packed layer ‘A’ and place a similar layer above 

it such that the spheres of the second layer are placed in the depressions of the first layer. Since 

the spheres of the two layers are aligned differently, let us call the second layer as B. It can be 

observed from Fig.1 that not all the triangular voids of the first layer are covered by the spheres 

of the second layer. This gives rise to different arrangements. Wherever a sphere of the second 

layer is above the void of the first layer (or vice versa) a tetrahedral void is formed. These voids 

are called tetrahedral voids because a tetrahedron is formed when the centres of these four 

spheres are joined. They have been marked as ‘T’ in Fig. 1. One such void has been shown 

separately in Fig. 2. 
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At other places, the triangular voids in the second layer are above the triangular voids in 

the first layer, and the triangular shapes of these do not overlap. One of them has the apex of the 

triangle pointing upwards and the other downwards. These voids have been marked as ‘O’ in 

Fig. 1.  Such voids are surrounded by six spheres and are called octahedral voids. One such void 

Fig.2. Tetrahedral and Octahedral Voids a) Top View   b) Exploded Side view   c) 

Geometrical Shape of the Void 
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has been shown separately in Fig. 2. The number of these two types of voids depends upon the 

number of close packed spheres. 

 

Let the number of close packed spheres be N, then: 

The number of octahedral voids generated = N 

The number of tetrahedral voids generated = 2N 

 

(B)  Placing third layer over the second layer: When third layer is placed over the second, 

there are two possibilities. 

     i)  Covering tetrahedral voids [Hexagonal close packing (hcp)] 

Tetrahedral voids of the second layer may be covered by the spheres of the third layer. In 

this case, the spheres of the third layer are exactly aligned with those of the first layer. Thus, the 

pattern of spheres is repeated in alternate layers. This pattern is often written as ABAB ....... 

pattern. This structure is called hexagonal close packed (hcp) structure (Fig.3a  ). This sort of 

arrangement of atoms is found in many metals like magnesium and zinc 

                     
ii)  Covering octahedral voids [ Cubic close packing (ccp)] 

The third layer may be placed above the second layer in a manner such that its spheres 

cover the octahedral voids. When placed in this manner, the spheres of the third layer are not 

aligned with those of either the first or the second layer. This arrangement is called “C’ type. 

Only when  fourth layer is placed, its spheres are aligned with those of the first layer as shown in 

Figs. 1.18 and 1.19. This pattern of layers is often written as ABCABC ........... This structure is 

called cubic close packed (ccp) or face-centred cubic (fcc) structure. Metals such as copper and 

silver crystallise in this structure. Both these types of close packing are highly efficient and 74% 

space in the crystal is filled. In either of them, each sphere is in contact  with twelve spheres. 

Thus, the coordination number is 12 in either of these two structures. 
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In both the above patterns of arrangements, the maximum occupied volume is 76% of the 

available volume.  

In both HCP and CCP the coordination number is 12 because a sphere is in contact with 6 

spheres in its own layer. It touches three spheres in the layer above and three in the layer below 

 

 
 

 

What is Radius Ratio Rule? 

Radius ratio rule states: 

 The difference in the crystal structure depends on the size of the ions 
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 As the size (ionic radius r) of a cation increases, more anions of a particular size can be 

packed around it. 

 Knowing the size of the ions, we should be able to predict which type of crystal packing 

will be observed. 

 Thus, the geometrical requirement for a given structure  in terms of the size of the two 

ions is expressed by radius ratio which is defined as 

                                           
What is Limiting Radius Ratio? 

For a specific structure, we can calculate the limiting radius ratio, which is the minimum 

allowable value for the ratio of ionic radii (r+/r-) for the structure to be stable. 

 

 
 

 

Calculation of Radius Ratio for coordination number 3 

 Figure shows that the smaller positive ion of radius r 
+
 is in contact with three larger negative 

ions of radius r 
-
.  In this figure, AB= BC= AC= 2 r 

-
 and BE= radius r 

-
 , BD= r ++ r 

-
. Further, 

the angle A-B-C is 60º and the angle D-B-E is 30º.  By trigonometry,  

 

                   
 

This will be the limiting ratio for coordination number 3 since a cation will be stable in a 

hole only if it is at least large enough to keep the anion from touching   r
+ 

/ r
-
 < 0.155.  
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Calculation of Radius Ratio for coordination number 4. 

Part of the tetrahedral arrangement is shown in the figure. It can be seen that the angle 

ABC is the tetrahedral angle of 109º 28’ and hence the angle ABD is half of this, that  is 54º 44’.  

 

This will be the limiting ratio for coordination number 4 since a cation will be stable in 

tetrahedral hole only if it is at least large enough to keep the anion from touching   r+/r- > 0. 225. 

Smaller cations will fit into trogonal holes in the lattice.  
 

Calculation of Radius Ratio for coordination number 6. 

An octahedral site is shown in the figure and the smaller positive ion of radius r 
+ 

touches 

six negative ions of radius r 
-
. Note that only four negative ions are shown in this figure and one is 

above and another is below the paper. 

 
This will be the limiting ratio since a cation will be stable in an octahedral hole only if it 

is at least large enough to keep the anion from touching   r+/r- > 0.414. Smaller cations will fit 

into tetrahedral holes in the lattice.  
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By similar geometric calculation it is possible to find the ratio when one cation can 

accommodate eight anions (0.732) or twelve anions (1.00).  
 

 

The limiting radius ratio value is given in the table 

 

Radius ratio C. N Structure 

Less than 0.225  3 Trigonal planar 

0.225 -  0.414 4 Tetrahedral  

0.414 – 0.73 6 Octahedral(FCC Patern) 

More than 0.73 8 BCC 

 

 
 

Application of radius ratio:  

1. It is used to rationalize the structures and to predict the coordination numbers of 1:1 or 

2:2 types of salts. 

Examples 

 Consider beryllium sulfide 

                           
Thus it is expected that coordination number is 4 as the Be2+ ion fits most readily into the 

tetrahedral holes of the closest packed lattice and indeed it is found experimentally. Hence BeS 

adopts a wurtzite structure. 

 Consider the sodium Chloride  

                        
Thus it is expected that coordination number is 6 as the Na+ ion fits most readily into the 

octahedral holes of the closest packed lattice and indeed it is found experimentally.   

Consider the Cesium Chloride  

                         
 The coordination number of cation is 8 
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2. It is used to rationalize the structures and to predict the coordination numbers of salts 

with different numbers of cations and anions. In such cases it is usually best to perform 

two calculations. 

Examples: 

Consider the structure of SrF2 

 

  

 
There must be twice as many fluoride ions as strontium ions, so the coordination number of the 

strontium ions must be twice as large as that of fluoride. Coordination number of 8 (Sr
2+

) and 

4(F
-
) are compatible with the maximum allowable coordination numbers and with the 

stoichiometry of the crystal.   Hence, Strontium fluoride crystallizes in the fluorite lattice. 

Consider the structure of SnO2 

 

 

Considering the stoichiometry of the salt, the only feasible arrangement is with C.N. of O
2-

 is 3 

and C.N. of Sn
4+

 is 6. Hence tin dioxide assumes the TiO
2
 or rutile  structure. 

Consider the structure of  K2O 

 

 

Considering the stoichiometry of the salt, the only feasible arrangement is with C.N. of O
2-

 is 8 

and C.N. of K
+
 is 4. Hence tin dioxide assumes the antifluorite structure. 

 

Problem:  

Predict the crystal structure of TlCl.  The ionic radii are r(Tl
+
)  = 159 pm and r(Cl

-
)  = 181 pm, 

 Solution:  

The radius ratio is   0.88. We can therefore predict that TlCl is likely to adopt a cesium-chloride 

structure with (8, 8) coordination. That is the structure found in practice.  
 

Diffraction of X-rays by Crystals 
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 It is known that when light falls on an object, which is of the same size as the wavelength 

of light, it is diffracted. This fact is usually investigated by means of a diffraction grating, which 

consists of a large number of fine, equidistant and parallel lines drawn on the metal or some 

other materials. 

 W.H Bragg and W.L.Bragg discovered that a crystal could behave as a three-

dimensional diffraction grating to x-rays. Thus they used x-ray for the purpose of studying the 

internal structure of crystals. 

The Bragg’s  Equation 

 The following equation is the mathematical statement of Bragg’s law of x-ray diffraction  

 

  Where  = the wavelength of the x-rays used; d = the interplanar distance; 

                      n  = the order of reflection; and  = the angle of incidence. 

Derivation 

 A beam of x-rays incident on the atoms, which constitute a plane, is diffracted in such a 

way as to cause either interference or reinforcement of the beam diffracted from the first or the 

outer plane. The whole beam behaved as if it had been reflected from the surface of the crystal. 

The crystal behaves as transmission grating because it contains a series of equally spaced atomic 

planes.  

 When x-rays are incident on a crystal face 

they penetrate into the crystal and scattered by the 

atoms or ions. 

Consider a set of parallel and equidistant planes 

AA', BB', etc. in the crystal as shown in Fig. 

These planes characterize the arrangement of the 

atoms or ions in the crystal. A parallel beam of 

monochromatic x-ray of wavelength  strikes these 

planes at an angle of incident.  

 Some of the rays will be reflected by atoms from the upper layer AA', with angle of 

reflection being equal to the angle of incident. 

When the rays reflected from the successive layers are in phase, constructive interference will 

occur and a bright diffraction spot would be obtained from these planes. 

n = 2d Sin 
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 The condition for the constructive interference is that the path difference between the 

reflected rays from successive planes must be an integral multiple of wavelength. 

 The condition for reinforcement can be obtained as follows. 

 The path difference for LMN and PQR is equal to SQ + QT, where MS and MT are 

perpendiculars drawn from M to PQ & QR respectively. 

 If d is the interplanar spacing between the successive planes, then both SQ and QT are 

equal to d Sin, since the angles SMQ and QMT are equal to . 

   (SQ = MQ sin ) (MQ = d) 

   (QT = MQ sin ) (SQ = QT) 

The total path difference is thus 2d Sin . 

 For a reflection of maximum intensity this quantity must be an integral number (n) of 

wavelength , as stated above. 

 Hence the condition for maximum reflection is n = 2d Sin, where n = 1,2,3… and is 

known as the order of reflection. 

 If n = 1, the order of reflection is one. If n = 2, the order of reflection is two and so on. 

 The equation n = 2d Sin, is known as Bragg equation and gives the relationship 

between the interplanar spacing ‘d’ and the angle at which the reflected radiation has maximum 

reflection for a given wavelength . 

Experimental Methods of Crystal Analysis: Single Crystal Method: (Bragg – x-ray 

spectrometer) 

 It is evident from Bragg equation that if the angles of incidence  are measured for the 

various orders of maximum reflection, the interplanar spacing d between the successive planes of 

a given type of crystal can be calculated, provided the wavelength  of the x-ray is known. 

 The reflection angle  and the intensities of the reflected beams corresponding to these 

angles can be determined with a Bragg x-ray spectrometer. 

 The x-rays generated in x-ray tube are passed through a series of slits to give a sharp and 

monochromatic beam. 

 The beam is then directed to strike the face of a crystal, which is mounted on a graduated 

rotating table. 
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 The rays reflected from the crystal are allowed to pass through a detector known as an 

ionizing chamber filled with vapour of methyl bromide. 

 The chamber is rotated coaxially with the crystal table. 

 The crystal table and the chamber are so adjusted that when the crystal rotates through 

any angle, the chamber rotates at twice that angle so that the reflected rays always enter the 

chamber. 

 The extent of ionization produced by the reflected beam is measured by the electrometer. 

  

 

 

 

 

 

 

 The value of incident angle  is gradually increased by rotating the table. 

 The intensities of the reflected x-rays for various angles are determined.  

 Strong reflections are obtained from those planes which contain larger number of atoms 

and for those values of  which satisfy the Bragg equation. 

 The process is repeated for each plane of the crystal. The intensities of the reflected rays 

are plotted against twice the angle of incidence of the beam to the crystal and the lines are 

indexed. 

 Thus, when the crystal is rotated, the angles are obtained to satisfy Bragg’s equation, 

signals are produced. The intensity of these signal flashes is measured. From this and the angle 

of rotation, the values of ‘n’ and the angle of incidence  are determined. 

Experimental Methods of Crystal Analysis: The powder Method: (Bragg – x-ray 

spectrometer) 

 

 

X – ray tube 

S1 

 

S2 

Bragg x-ray spectrometer 
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 Powder specimen can also be used instead of single crystals. In this method, the crystal 

under study is ground into fine powder. The fine powder contains small granules of crystals with 

random orientations. If we have enough powder randomly oriented on the surface, we expect 

some of the different atomic planes to lie parallel to the surface. Therefore, if we scatter an 

incident X-ray beam from 0 to 90 degrees, we should find all the angles where diffraction 

occurred. Each of these angles will correspond to a different atomic spacing. The instrument 

used to make these measurements is the X-ray powder diffractometer. 

 The data recorded in the detector is the X-ray intensity in counts/second. By plotting the 

intensity against the angle of the incident X-ray, we can produce a series of peaks. These 

diffraction peaks correspond to d-spacing and can be converted using the Bragg equation. 

Structures of some typical lattices 

1) AB type Structures of ionic crystals 

Example: NaCl,  CsCl and ZnS ( Sphalerite) 

2) AB2 type Structures of ionic crystals 

Example: CaF2 (Fluorite structure)  

3) A2B type Structures of ionic crystals 

Example: Na2F (Anti-fluorite structure)  

4) ABX3 type Structures of ionic crystals 

Example: Perovskite structure (CaTiO3) 

Structure of NaCl Crystal 
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Main features 

It has a face centred arrangement (or CCP). Cl
-
 ions occupy the corners and face centers, 

Na
+
 occupy body centre and edge centers. 

Each Na
+
 is surrounded by six Cl

-
 and each Cl

-
 is surrounded by 6 Na

+
. Therefore it has 

6:6 coordination. 

 

Number of NaCl Units per unit cell. 

i) Number of Cl 
-
 ions 

 

                                                      Total number of Cl
-
 ions = 4 

ii) Number of Na + ions 

 
One at the body center contributes fully = 1 x 1 = 1  

                 Total Number of Na
+
 = 3+1=4 

 Therefore, there are 4 NaCl molecules in one Unit cell.  

There are four 4 Chloride ions and 4 Na ions in one unit cell. These are totally 8 ions in one unit 

cell. 
 

Problem 

1. How many unit cells are there in one mole of NaCl crystal? 

2. How many unit cells are there in 10 gram of NaCl? 

Other examples of NaCl structure 

 Halides of alkali metals (except caesium) and that of ammonium 

 Oxides and sulphides of alkaline earth metals (except BeS) 

 Halides of silver (except silver iodide). 

Structure of CsCl Crystal 
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Unit cell of CsCl 

  

 

In this structure, Cs ions are represented by hallow circles whereas Cl ions are 

represented by solid circles. The crystal structure of CsCl can be discussed as follows. 

  

 

 

    

 

 

 

 

a) Arrangement of Cs
+
 and Cl ˉ ions 

The unit cell of the crystal CsCl contains 27 Clˉ ions and 8Cs+ ions. 8 Clˉ ions are 

present at the eight corners of the unit cell, 6 Clˉ ions are present at the center of each of the six 

faces, 12Clˉ ions are present at the center of 12 edges and one Clˉ ion is located at the center of 

the cubic unit cell. All the  8 Cs
+
 ions are present with in the unit cell. 

b) Formula of CsCl crystal and occupation of cubic interstitial sites 

      If the entire cubic unit cell of CsCl is divided into 8 small cubic unit cell, then we may see 

that each of these small cubic unit cells has 8 Clˉ ions and one Cs
+
 ion. 8 Clˉ ions are present at 

the eight corners of the cube and Cs
+
ion is located at the center of the cube. 

Since each of the 8 corner Clˉ ion is shared by 8 adjacent cubes, 8 corner Clˉ ions contributes 

only 8 x 1/8 = 1 Clˉ ion to the cube. Thus each of the 8 small cubes into which the whole cell is 

divided contains one Cs
+
 ion and one Clˉ ion and hence the formula of Cesium chloride is CsCl. 

i.e., the stoichiometry of the compound is 1:1. 

  Each small cube contains eight ions (Clˉ) at its eight corners and one ion (Cs
+
) at its body 

center, and this arrangement of ions (8Clˉ and 1Cs) is called body-centered arrangement, but 

actual definition of body-centered cubic is that the arrangement should contain the same ions at 

the corners as well as at the body center. Consequently to call the arrangement of Cs and Clˉ ions 

a body-centered cubic arrangement is misnomer. 

 

 

Main features of CsCl structure: 

The extended unit cell. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           27      Cl 
-
     8      Cs

+
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 The radius ratio (r+/r-) value for CsCl crystal is 0.884. Since the value lies in the range 

0.732 – 1.000, which suggests that it has a bcc type lattice  

 Cl
-
 ions are at the corners, centers of the faces,  centre of the edges and center of the body   

and Cs ions are present at the centre of the body of individual unit cell. 

 Each Cs
+
 ion is surrounded by 8 Cl

-
 ions and each Cl

-
 ions is surrounded by 8 Cs

+
 ions. 

Therefore the crystal has 8:8 co-ordination. 

Number  of Cl 
– 

 ions 

Atoms at the corner contribute = 1/8 ×8 = 1 

 Atoms at the centre of the face contributes = ½ ×6 = 3 

Atoms at the centre of the edge contributes=12× ¼   3 

Atoms at the centre of the body contributes = 1×1= 1 

Hence the total number of Cl ions is 8. 

Number  of Cs
+ 

 ions 

For smaller uint it is 1  

For bigger unit it is 8  

 Hence the total number of Cl 
– 

and  Cs
+ 

 ions is (8+8)16. 

 Therefore, there are 8 CsCl molecules in one unit cell of CsCl. 

 Other examples :  CsBr, CsI, CsCN, TiCl, TiBr, TiCN etc. 
 

Zinc blende, ZnS (Sphalerite) 

ZnS has two common crystalline forms, both with coordination number 4.  Zinc blende is 

the most common zinc ore and has essentially the same geometry as diamond, with alternating 

layers of Zn and S. It can also be described as having zinc ions and sulfide ions, each in face-

centered lattices, so that each ion is in a tetrahedral hole of the other lattice. The stoichiometry 

requires half of these tetrahedral holes to be occupied, with alternating occupied and vacant sites. 

 

              

Main features 

 Arrangement is F.C.C. (or C.C.P). The  S
2-

 ions are present at the corners and face 

centers. 
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 Zn
2+

 ions are present in alternate tetrahedral voids.(ie, Zn
2+

 ions at the body centre of 

small cube in  alternative cubes) 

 Each Zn
2+

 ion is surrounded tetrahedrally by S
-2

 ions each and S
-2

 ion is surrounded 

tetrahedrally by Zn
2+

 ions. Therefore this structure has 4:4 coordination. 

 

Number of S
2-

 ions per unit cell. 

         At corners contributed 

                            
             6 at the face centre contribute  

                                       
                                 Total number of S

-2
 per unit cell = 4.  

 

Number of Zn
2+

 ions per unit cell. 

At the centre of the body in each small cube 1×4= 4 

 Hence, there are 4 Zn
2+ 

ions and four S
2-

 ions, totally there are 8 ZnS ions, and 4 ZnS 

molecule in one unit cell. 

 Since Zn
2+

 ions occupy half the tetrahedral sites, the number of Zn
2+

 ions per unit cell 

will be 4. 

 Total number of ZnS per unit cell = 4.  

 Other examples  : CuCl, CuBr, CuI, AgI, BeS. 

 
Wurtzite ( ZnS) 

The wurtzite form of ZnS, Figure  is much rarer than zinc blende, and is formed at higher 

temperatures than zinc blende. It also has zinc and sulfide each in a tetrahedral hole of the other 

lattice, but each type of ion forms a hexagonal close-packed lattice. As in zinc blende, half of the 

tetrahedral holes in each lattice are occupied. 
 

Main features 

 Sulphide ions are arrangement in Hexagonal Close Packing.  

 Zn
2+

 ions occupy half of the tetrahedral site 

 Each Zn
2+

 ion is surrounded tetrahedrally by S
2-

 ions each and S
2-

 ion is surrounded 

tetrahedrally by Zn
2+

 ions. Therefore this structure has 4 : 4 coordination. 

 The radius ratio (r+/r-) value for Wurtzite crystal is 0.40, which suggests that it has a 

coordination number 4 

 The basic difference between Zinc blende and Wurtzite is that in Wurtzite, the S
2-

 ions 

are arranged in HCP (ie, ABABB type ) and in Zinc blend it is CCp (ie, ABCABC tye). 
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Fluorite Structure (CaF2) -AB2 type 

 
The fluorite crystal belongs to AX2 type. This is also called calcium fluoride crystal (CaF2).  

 

The Salient features of CaF2 Crystal 

a) Arrangement of Ca
2+ 

and Fˉ ions and occupation of tetrahedral sites 

 Since Calcium ion is larger than fluoride ion,  Ca
2+

 ions have ccp arrangement (FCC) 

 Ca
2+

 ions are at all the eight corners and at all centers of the six faces of the cube. 

 F
-
 ions are present in the body of each small cube (i.e. in all the available tetrahedral 

voids). 

b)  Formula of calcium fluoride crystal and coordination number: 
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Number of calcium ions 

 At the corners  1/8  ×8 = 1 

 At the face centre 6× ½ = 3 

 Hence total number of calcium ions is 4 

 Number of Fluoride  ions    = 8  

 i.e. Each Ca
2+

 is surrounded by 8F
-
 where as each F

-
 is surrounded by 4Ca

2+
 so it has 8:4 

co-ordination. 

 It is supported by its radius ration value of CaF2 crystal is 0.73. Since the value lies in the 

range 0.732 – 1.000, coordination number of Ca
2+

 ion in CaF2 is equal to 8. 

 Similarly the coordination number of Fˉ ion in CaF2 is 4 since tetrahedral arrangment of 

4Ca
2+

 ions around Fˉ ions. 

 Therefore, CaF2 is 8:4 ionic crystal. 

 Number of Ca
2+

 per unit cell is 4. Number of F
-
 is 8 (because all the tetrahedral voids are 

occupied by F
-
 ions). Therefore 4CaF2 units per unit cell. 

 Other examples of fluorite structure: BaF2, BaCl2, SrF2, SrCl2. 

Antifluorite crystal structure 

Main features 

 It is the reverse of fluorite structure. The anions are in the ccp type of lattice and the 

cations are at the body centre. 

 Generally the alkaline metal oxides and sulfides prefer this structure. 

 O
2-

 ions (i.e.anions) are present at the corners and centres of faces (i.e. constitute F.C.C. 

or C.C.P.).  

 Na
+
 ions (i.e.) are present at the bidy of the each cube( i.e. occupy all the tetrahedral sites. 

Number of anions 

At the corners  1/8 × 8= 1 

At the centre of face 6×1/2 = 3 

Hence total number of oxide ions per unit cell is 4 

Number of cations = 8 

Each O
2-

 is surrounded by 8 Na
+
 ions. 

Each Na
+
 by four O

2-
 ions.  

Na2O has 4:8 co-ordination.  

Number of Na2O   molecule per unit cell is 4. 
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Rutile Structure (TiO2) 

                          

Main features 

 The cube is not perfect cube. Along of the axes, the length is shorter than the other two 

by about 30%. Thus it is called distorted cube i.e. elongated cube. 

 Titanium ion is at the corners and body centre of the cube. 

 Oxygen ion is at the position shown above (red). 

Number of titanium ion 

 At the corners  1/8 × 8= 1 

 At the body 1×1         = 1 

 Hence total number of titanium ions per unit cell is    =  2 

Number of oxide  ion. 

 At the face 4×1/2 = 2 

 The other two oxygen atoms are inside 

 Hence total number of oxygen ions per unit cell is       =   4 

                     i.e. Number of TiO2   molecule per unit cell is 2 

 

 Each Ti
+
 is surrounded by 6 oxide ions. 

 Each oxide is surrounded by 3 titanium ions.  

 TiO2 has 6:3 co-ordinations.  

Since oxygen is smaller, the cavity generated by six  oxygen is enough to hold the Ti.  

Hence, CN is 6. Since titanium is large. The cavity generated by 3 titanium is enough to hold the 

oxygen. Hence CN is 3. 
 

Perovskite structure (CaTiO3) 

 

It has a structure of CCP array of ABX3 type. In an ABX3 crystal,  A is Ca, B is Ti and X3 is O3. 

In this structure, Ca atom surrounded by 12 oxygen atoms and the Ti surrounded by 6 oxygen 

atoms. The Oxygen atom is surrounded by 4 titanium atoms. Therefore, the coordination number 

of Calcium is 12, Ti atom is 6 and Oxygen atom is 4.   

Other examples: SrTiO3 and BaTiO3. 
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The sum of the charge on the A and B ions must be 6, but that can be achieved in several 

ways (A
2+

B
4+

 and A
3+

B
3+

 among them), including the possibility of mixed oxides i.e., 

A(B0.5B
1

0.5)O3 for e.g. La(Ni0.5Ir0.5)O3. 

Rhenium trioxide structure (ReO3) 

                 
Main features 

 Oxygen ions are at the center of the all 12 edges. 

 Re atom are at all 8 corners. 

Number of oxygen atoms 

 At the corners 12× ¼ == 3 

 Hence total number of oxide ions per unit cell is 3 

Number of Re atoms 

 At the edges 8× 1/8 = 1  

 Hence, there are totally 4 atoms in one molecule of ReO3 per unit cell. 

 Each Re is surrounded by 6 oxide ions. 

 Each oxide is surrounded by 2 Rhenium ions.  

 Hence, Coordination number is 6:2. 
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The structure of Diamond and Graphite 

 Until 1985, carbon was encountered primarily in two allotropes, diamond and graphite. 

The diamond structure is very rigid, with each atom surrounded tetrahedrally by four 

other carbon atoms and each carbon atom in this structure may be viewed as being sp
3
 

hybridized. As a result, diamond is extremely hard, the hardest of all naturally occurring 

substances. Graphite, on the other hand, consists of layers of fused six-membered rings of 

carbon atoms.  

 The carbon atoms in these layers may be viewed as being sp
2
 hybridized. The remaining, 

one unhybridized p orbitals are perpendicular to the layers and participate in extensive  

bonding, with  electron density delocalized over the layers. Because of the relatively 

weak interactions between the layers, the layers are free to slip with respect to each other, 

and  electrons are free to move within each layer, making graphite a good lubricant and 

electrical conductor. 

  The structures of diamond and graphite are shown in Figure 1 and 2, and their important 

physical properties are given in Table.1. 

  

 Table-1: Physical Properties of Diamond and Graphite  

Property Diamond  Graphite  

Density  3.513 2.260 

Electrical resistivity (ohm) 10
11

 1.570 10
-5

 

Standard molar entropy (J mol
-1

 K
-1

) 2.365 5.740 

C-C distance (pm) 1.54 141(within layer) 

325 (between layer) 

  

 At room temperature, graphite is thermodynamically the more stable form. However, the 

density of diamond is much greater than that of graphite, and graphite can be converted to 

diamond at very high pressure. Since the first successful synthesis of diamonds from 

graphite in the mid-1950s, the manufacture of industrial diamonds has developed rapidly, 

and nearly half of all industrial diamonds are now produced synthetically.  
 

 



UNIT –I : SOLID STATE / SEM –IV / M.Sc / Dr. MA & CR / SJC / TRICHY-02  46 
 

Normal spinel and inverse spinel 

The spinel structure 

Spinels have the formula AB2O4 after the name of the mineral MgAl2O4, where A can a 

group IIA (2) metal or a transition metal in +2 oxidation state and B is a group IIIA (3) metal or 

a transition metal in the +3 oxidation state. The Oxide ions form a close-packed cubic lattice 

with eight tetrahedral holes and four octahedral holes per AB2O4 unit. 

 

In a so-called normal spinel such as MgAl2O4, the Mg
2+

 ions occupy one-eighth of the 

tetrahedral holes and Al
3+

 ions occupy one half of the available octahedral holes. This is the 

arrangement that would be predicted to be the most stable as it yields a coordination number of 4 

for the divalent ion and 6 for the trivalent ion. 

 

The structure is the one in which each A ion is tetrahedrally coordinated by 4 O ions and 

each B ion is Octahedrally coordinated by 6 O ions and each O ion is bonded to 1A and 3B ions 

in CCP arrangement. 

 

             i.e. A―4O,     B―OX,    A―X―3B. 

 

The structure described above is said to be normal spinel structure or simply spinel 

structure and the arrangements are found in many AB2O4oxides. Some oxides of this 

composition have the alternate structure called inverse spinel structure or anti spinel structure. 

i.e.  

 (A II )
Td

 (B III

2 ) oct O 4 ccp   = Normal spinel 

 

(B III )
Td

 (A II B III ) oct  O 4 ccp  = Normal spinel 

 

If N ions are arranged in CCP, there will be N number of octahedral holes and 2N number of 

tetrahedral holes 

 

Therefore, There is 4 oxide ions in CCP and hence there will be 4 octahedral holes and 8 td 

holes. 

 

So, in spinel,  

 4 oxide ions are in CCP 

 Only 1/8 of td holes are occupied by A 

 Half (½) of the oct. holes are occupied by B 

But in the case of inverse spinel,  

 4 oxide ions are in CCP 

 All A metals are in oct holes (i.e. ¼ of oct holes are occupied by metal ion A) 

 ¼ of metal B are in oct holes. 

 ¼ of metal B are in td holes. 
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Some examples for normal spinel 
 M 2 [Al 3

2 ]O4
 
 where M = Mg

2+  
, Mn

2+ 
, Fe

2+  
, Co

2+ 
,  Zn

2+     

 
[Note: Ni

2+
 Al 3

2 O4
 
is inverse spinel] 

 Mn3O4, Co3O4,  

 Mg 2 Cr 3

2 O4
 
 , Ni 2 Cr 3

2 O4
 
  

 The spinel structures include many ternary oxides with the stoichiometry AB2O4 that 

contain a 3d-series metal, such as NiCr2O4 and ZnFe2O4, and some simple binary d-block 

oxides, such as Co3O4, and Mn3O4; note that in these structures A and B are the same 

element but in different oxidation states, as in Co
2+

[Co
3+

]2O4.  

 

Some examples for inverse spinel 

 There are also a number of compositions termed inverse spinels, in which the cation 

distribution is B[AB]O4 and in which the more abundant cation is distributed over both 

tetrahedral and octahedral sites. 

 Fe3O4 (Magnetite) 

 Ni
2+

 Al 3

2   etc. 

Predicting the structures of spinel and inverse spinel by crystal field factor 

1. The occupation factor,, of a spinel is the fraction of B atoms in the tetrahedral sites: 

=0 for a normal spinel and =0.5 for an inverse spinel, B[AB]O4; intermediate  values 

indicate a level of disorder in the distribution.  

 

The distribution of cations in (A
2+

, B
3+

) spinels (Table 1) illustrates that for d
0
 A and B 

ions the normal structure is preferred as predicted by electrostatic considerations.  

 

Table 1 shows that, when A
2+ 

is a d
6
, d

7
, d

8
, or d

9
 ion and B

3+
 is Fe

3+
, the inverse 

structure is generally favored. This preference can be traced to the lack of ligand-field 

stabilization of the high-spin d
5
 Fe

3+
 ion in either the octahedral or the tetrahedral site and 

the ligand-field stabilization of the other d
n
 ions in the octahedral site.  

 

For other combinations of d-metal ions on the A and B sites the relative ligand-field 

stabilization energies of the different arrangements of the two ions on the octahedral and 

tetrahedral sites need to be calculated. It is also important to note that simple ligand-field 

stabilization appears to work over this limited range of cations. More detailed analysis is 

necessary when cations of different radii are present or any ions that are present do not 

adopt the high-spin configuration typical of most metals in spinels (for instance, Co
3+

 in 

Co3O4, which is low-spin d
6
). Moreover, because  is often found to depend on the 

temperature, care has to be taken in the synthesis of a spinel with a specific distribution 

of cations because slow cooling or quenching of a sample from a high reaction 

temperature can produce quite different cation distributions 

The compound CoAl2O4 is among the normal spinels in Table 1 with = 0 and thus has 

the Co
2+

 ions at the tetrahedral sites. The colour of CoAl2O4 (an intense blue) is that 

expected of tetrahedral Co
2+

. Other mixed d-metal spinels that exhibit strong colours, for 

example CoCr2O4 (green), CuCr2O4 (black), and (Zn,Fe)Fe2O4 (orange/brown), are also 
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used as pigments, with applications that include colouring various construction materials, 

such as concrete. 

                                 

A

B

Al
3+

Mg
2+

Mn
2+

Fe
2+

Co
2+

Ni
2+

Cu
2+

Zn
2+

Cr
3+

Mn
3+

Fe
3+

Co
3+

d
0

d
5

d
6

d
7

d
8

d
9

d
10

d
0

d
3

d
4

d
5

d
6

0

0

0 0.38 00

0 0 0 0 0 0

0 0

0.45 0.1 0.50.5 0.5 0.5 0

00

-- -- -- -- --

--

----------

= 0 corresponds to normal spinel  = 0.5 corresponds 
 to inverse spinel

Table 1: Values of 

 
 

2. Use of CFSE for predicting the structures of spinel 

  The  role  of  LFSE’s  in  determining  site  preferences  is  provided  by  the  series  of  

oxides Fe3O4, Mn3O4 and Co3O4 ,of  which  only  the  first  is  inverted.  All   energy  

connected  with  inversion   should  be  similar  in  the  three   compounds  except  the  

differences  in   LFSE’s,  and these  are   just  such  as  to  favor   inversion  in  Fe3O4  but  

not  in  the  others.  Thus,  transfer  of  the  d
5
  Fe 3 ion  involves   no   change  in   LFSE,   

but   transfer  of  the  high-spin  d
 6 

Fe 2 ion   from  a   tetrahedral  to  an   octahedral  hole   

produces  a  net  gain  in   LFSE.  For  Mn3O4,  transfer  of  the  d
5
 Mn 2 ion   makes  no   

change  in    LFSE,   but  transfer  of  the   d
 4

  Mn 3 ion  from  an  octahedral   to  a  

tetrahedral    hole  would  decrease  the  LFSE,  so  that  the   process   of  inverting  

Mn3O4  is disfavored. For   Co3O4  the  transfer  of the  Co 2 ions  to  octahedral  holes  

would  be  only  slightly  favored   by  the  LFSE’s,  whereas  the  transfer  of  a  low-spin  

d
6
 Co 3 ion  from  an  octahedral  hole  to  a  tetrahedral  one   where  it  would  

presumably  become   high-spin  would  cause  a nenormous  net  decrease  in  LFSE,  so  

here, even  more  than  in  the  case  of  Mn3O4, we  do  expect  inversion. 

 

Problems: Predicting the structures of spinel compounds 

1. Is MnCr2O4 likely to have a normal or inverse spinel structure? 

Answer  We need to consider whether there is a ligand-field stabilization. Because Cr
3+

 (d
3
) 

has a large ligand-field stabilization energy (1.2ΔO from Table 20.2) in the octahedral site 

(but a much smaller one in a tetrahedral field) whereas the high spin d
5
 Mn

2+
 ion does not 

have any LFSE, a normal spinel structure is expected. Table 1 shows that this prediction is 

verified experimentally.  

 
 

Self-test : Table 1 indicates that FeCr2O4 is a normal spinel. Rationalize this observation. 

 
 
 



UNIT –I : SOLID STATE / SEM –IV / M.Sc / Dr. MA & CR / SJC / TRICHY-02  49 
 

Solid State Chemistry (Unit I ) 

1. Define the terms unit cell and Weiss indices. 

2. What are miller indices?  

3. Explain why it is not possible to distinguish K+ ions from Clˉ ions by X-ray diffraction 
studies? 

4. What is the relation between lattice constant and density? 

5. Show that the volume occupied in CCP or FCC structure is 74% 

6. Derive the Bragg‟s equation and show that λ = dhkl Sinθ. What is the physical significance of 
„n‟ in the equation nλ = 2dSinθ ? 

7. Describe the powder method for the determination of crystal structure. 

8. How many Zn2+ ions and how many S2- ions are in the sphalerite unit cell? Draw its 
structure. 

9. Compare the crystal structure of rutile and cesium chloride. 

10. Define the terms i) Crystal Lattice   ii). Unit cell. 

11. Calculate the miller indices of a crystal plane which cut through crystal axes at             

i). (2a, -3b, -3c)  ii) (a/3, b, -c/2) and (4:3:) 

12. Give the relationship between volume of a unit cell and density. 

13. A substance with fcc lattice has density 6250kg/m3 and molecular weight 60.2.  Calculate the 
lattice constant „a‟. Given Avogadro number is 6.02 x 1025 kg/mol. 

14. A beam of x-rays is incident on a sodium chloride crystal (lattice spacing is 2.82 x 10–10m). 
The first order Bragg‟s reflection is observed at a glancing angle of 8º 35'. What is the 
wavelength of x-rays. At what angle the second and third order Bragg‟s reflection occur? 

15. In the closest packed structure, 26% of the space is vacant. Explain with an example. 

16. Draw and describe the crystal structure of Zinc blende and wurzite. 

17. Describe the crystal structure of Zinc blende. What is the cation to anion ratio in this 
structure? What geometric arrangement of cations is there about each case? 

18. Copper has fcc structure and its atomic radius is 1.278º. Calculate its density. The atomic 
weight of copper is 63.5. 

19. Calculate the interplanar spacing (dhkl) for cubic system between the following sets of planes 
(220) and (222). Assume that „a‟ is the length of the cube. 

20. Account for the fact that LiCl, KCl, RbCl have fcc structure while Cesium chloride has a bcc 
structure. 

21. Solids are essentially incompressible where as gases are easily compressed. Explain. 

22. How do you account for the abnormal behavior of (111) plane from (100) and (110) planes? 

23. Draw the (200) and (220) planes of a face centered cubic lattice. 

24. Explain why it is not possible to replace x-rays by UV of 10nm wavelength in the diffraction 
studies of crystals? 

25. How do you account for fcc is more closely packed than bcc? 

26. Prove that the interplanar spacing (dhkl) in a cubic system is given by 

       where a is edge length of the cube. 

 

27. Describe the rotating crystal method for determination of crystal structure. 

28. Prove that in the bcc structure only 68% of the space is actually occupied by spheres. 

dhkl  = 
                         a 

                (h
2
 + k

2
 + l

2
)

1/2
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29. What is understood by the closest packing of identical spheres? What is meant by the 
stacking sequences ABAB and ABC ABC? How do these structures differ from each other? 

30. What is the coordination number of a Ti atom in perovskite? 

31. Calculate the number of atoms per unit cell of i). Face centered cube and ii). Simple 
orthorhombic.   

32. Describe the crystal structure of Rutile. 

33. Differentiate Fluorite and antifluorite structures. 

34. Write a note on Bravais lattice. 

35. Polonium crystallizes in a simple cubic unit cell. The atomic mass and density of Polonium 
are 209 and 91.5 kgm3 respectively. What is the edge length of its unit cell? 

36. Metal X (at mass 55.8) crystallizes in bcc pattern. What is the number of nearest neighbours? 
What is the volume of the unit cell? 

 

Choose the correct answer: 

1. The crystal structure of CsCl is                  

       (a) Simple cubic     (b) face-centered cubic    (c) Tetragonal     (d) Body centered cubic 

2. Rutile is 

       (a) TiO2         (b) Cu2O         (c) MoS2         (d) Ru 

3. The total number of atoms per unit cell in fcc is 

       a) 1                b) 2             c) 3          d)  4 

Problems:  

1. A compound is formed by two elements X and Y. Atoms of the element Y (as anions) make 

ccp and those of the element X (as cations) occupy all the octahedral voids. What is the formula 

of the compound? 

Solution:  

The ccp lattice is formed by the element Y. The number of octahedral voids generated 

would be equal to the number of atoms of Y present in it. Since all the octahedral voids are 

occupied by the atoms of X, their number would also be equal to that of the element Y. Thus, the 

atoms of elements X and Y are present in equal numbers or 1:1 ratio. Therefore, the formula of 

the compound is XY. 

2. Atoms of element B form hcp lattice and those of the element A occupy 2/3rd of tetrahedral   

voids. What is the formula of the compound formed by the elements A and B? 

Solution :  

The number of tetrahedral voids formed is equal to twice the number of atoms of element 

B and only 2/3rd of these are occupied by the atoms of element A. Hence the ratio of the number 

of atoms of A and B is 2 × (2/3):1 or 4:3 and the formula of the compound is A4B3. 


